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Abstract

When using methods for recovering the least-
squares optimal pose+registration parameters
between a model and an image suite, construc-
tion of the feature correspondences is key. In-
clusion of outliers in the correspondence set can
severly deteriorate the performace and fidelity
of these pose+coregistration estimation algo-
rithms. We consider the use of median filter-
ing in the construction of consistent correspon-
dences. Finally, we test our coregistration with
a median filtering system on real ATR data.

1 Introduction

We have been investigating sensor suite pose recovery in
a multi-modal ATR domain. Our formulation considers
not only the relative pose between the model and the
sensor suite, but also the constrained intersensor regis-
tration. A least-mean-square-error algorithm has been
developed for simultaneous estimation of both pose and
registration (pose+registration) [7]. As a shorthand, the
term coregistration is used to describe this process.

Our coregistration algorithm takes as input a set of
correspondences between model features (points and
lines) and an initial coregistration estimate. It then uses
a non-linear optimization procedure to arrive at a coreg-
istration estimate which minimizes a sum-of-squared-
error between these corresponding features. The con-
struction of the initial set of corresponding features is
derived from initial expectations regarding the sensor
registration and object pose.

As with any least-mean-square-error fitting method,
the system is sensitive to outliers in the correspondence
set. Local search has been shown, using features from op-
tical imagery, to not only remove outliers, but to find op-
timal sets of corresponding features even when perhaps

This work was sponsored by the Advanced Research
Projects Agency (ARPA) under grants DAAH04-93-G-422
and DAAH04-95-1-0447, monitored by the U. S. Army Re-
search Office.

Bppears also in the Proceedings of the 1996 ARPA Image
Understanding Workshop.

only 5% of the total candidate features match {2]. Our
long term goal is an extension of this work to mulitsen-
sor matching using the fitting procedure defined in [7].
However, our current reliance upon ungrouped points
to represent range leads quickly to search spaces of in-
tractable size. One solution is to perform some grouping
on the range data, and work on this has begun. An-
other is to consider a more conventional approach to
outlier removal: median filtering. This paper presents
a least-median-squared-error extension of our previous
coregistration work and demonstrates the algorithm on
real ATR data.

2 Background

In our past work [7], we presented a coregistration re-
covery algorithm. We hypothesized that utilizing con-
straints between the sensors allowed for a more accurate
pose estimate to be computed. We also noted that data
in some multimodal domains, including ATR, tends not
to be boresighted. Due to mechanical vibrations and
torsions, day-to-day variations of several pixels can be
expected. Our coregistration takes these inaccuracies in
the sensor registration into account, applying corrections
to the intersensor translation.

The least-squares algorithm developed in [7] and ex-
tended in [1] utilizes an iterative non-linear optimization
method. Such algorithms require an initial parameter
estimate. The fidelity of this initial pose-+registration
estimate partially determines whether the coregistration
algorithm will converge to the correct minimum on the
error surface. To investigate this problem, two sets of
experiments were conducted and reported in {7]. These
experiments tested the recovery of pose+registration pa-
rameters given a poor initial estimate using perfect syn-
thetic data. It was found that the algorithm could re-
cover, with high probability, from initial estimates up to
45° and 100 meters off.

The second experiment utilized synthetic data
with Gaussian noise introduced and a perfect initial
pose+registration parameter estimate. This experiment
placed some bounds on the recoverability of the coreg-
istration parameters. We found that the amount of er-
ror tolerable in the image is related to the resolution of
the image. As the standard deviation of the measure-




ment error increases, the convergence point tends to mi-
grate. Practically speaking, this implies that the higher-
resolution color data can have greater pixel-uncertainty,
while the low-resolution range data needs to have rela-
tively little pixel-error.

When we attempted to coregister real ATR images
from the Fort Carson data set, we found after con-
siderable (unpublished) exploration that our algorithm
proved sensitive to both the geometry of the model and
image features and also to the correctness of the corre-
spondence set. If outliers were introduced into the cor-
respondence set, we found convergence to neighboring
minima, with large rotational errors.

Some statistical methods have been proposed in the
traditional literature and have been utilized by vision
researchers to construct outlier-free correspondence sets.
Kumar [4] utilized median filtering to evaluate his 3-D
full perspective pose recovery system and here we will
adapt it to coregistration.

3 Median Filtering

Least-squares methods, such as our Ef; measure, as-
sume that the data has Gaussian random noise added to
it. If, however, the correspondence data contains out-
liers, our method will be thrown off. Median filtering is
a robust statistic for detecting and removing outliers.

Median filtering [6] handles outliers by fitting to
the subset of the data which minimizes the ensemble
median error value. It is a robust statistic when there
are less than 50% outliers. This is in contrast to the
mean around which least-squares algorithms are based,
where a single outlier can radically shift the result. The
subset which minimizes the median error must contain
no outliers, otherwise it would skew the error, increasing
the median. And since the median is insensitive to up
to 50% outliers, so is median filtering.

The down side is that, for non-differentiable error
functions, a combinatorial search of the subset space
needs to be explored. To approximate the complete com-
binatorial search, we can select a number of small sub-
sets, assuming that we have a high probability of sam-
pling at least one subset which contains no outliers. This
vields the optimal fit, and allows us to throw out all data
not accounted for by the Gaussian assumption (ie, out-
side of two standard deviations of the best fit function,
since this will contain 98% of the data effected by Gaus-
sian noise).

The subsets need to be at least large enough to cover
the degrees of freedom, so we would need to select at least
3 optical lines and 1 range point. However, Kumar [4]
found that selecting a minimal number of features caused
the solution to be sensitive to the Gaussian noise that we
assume is overlaid onto the true data. As a consequence,
it is better to select a larger subset to stablize the optimal
pose against noise. If we select too large a subset size,
however, we greatly reduce our chances of selecting a
subset with no outliers. A compromise must be made
between probability and stability.

Once we have minimized the error, we need to se-
lect a cutoff point, above which we will consider cor-
respondences to be outliers. We can achieve this ei-
ther by selecting some a priori threshold or by comput-
ing one based upon the median. We choose the later
method. Assuming a normal distribution, we can set

cutoff = (a x 5)? where s = %%%[5"—1 is an approxima-
tion of the standard deviation for a Gaussian distribu-
tion based upon the interquartile range. Setting a to
2.0 filters out data which lies more than two standard
deviations above the error, so that the majority of the

Gaussian data will be retained.

4 Results and Discussion

Since we wish to utilize our coregistration recovery algo-
rithm as the alignment-and-evaluation component of a
matching system, we need to have a notion of how our
current system performs on real ATR data.

The initial set of corresponding model-image feature
pairs, S, is selected based upon spatial proximity given
a hand-picked initial pose+registration estimate. Prox-
imity thresholds are chosen based both upon the error
we observe in the feature extraction and by the percent-
age of outlines permitted by median filtering. We use
the neighborhood (z,y,7) = £(0.5,0.5,10.0) in the ladar
data (z and y are in pixels and r is range in meters) and
(d,8) = £(30,15) in the color data (where d is the aver-
age distance in pixels and 6 is the rotational difference
in degrees).

Median filtering is run on 300 subsets of 10 feature
correspondences each. For random feature selections,
we normalized the selection so that there is an equal
probability of selecting a feature from either range or
optical sensor. If this was not done, the selection would
be biased towards the LADAR data (which accounts for
over 95% of the correspondences s € ), and the CCD
portion of the error would often be ill-conditioned.

For the coregistration algorithm, we used weighting
factors as described in [1] which simply replace the wyy,
and we of [7] with 3 intuitive factors. First is a weight-
ing term () for controlling the relative importance of the
sensors. Since we lack knowledge about the importance
of these, we set a = 0.5. We are also normalizing the in-
dividual sensor errors using what amounts to the second
standard deviation of the presumed Gaussian noise for
the sensor. We will call these terms 7, (optical/CCD)
and 7, (range/LADAR) and set them to 0.25 and 5 me-
ters respectively. These values seem to intuitively rep-
resent the error we are observing, though they were not
found using a formal error estimation process. In order
to lend additional stability, we invoke the Levenberg-
Marquardt rule not only when the error would increase,
but also when a rotation update of greater than 10° is
proposed.

The results of the median filtering are given in Table 1.
Median filtering takes on the order of 30 minutes and this
time is sensitive to the total number of corresponding




(a) initial model

(d) final model (e) final CCD

(b) initial CCD

L

(f) final LADAR

Figure 1: Diedian filtering results on Shot 18 (M60)

Image CPU Time (sec) | Correspondences
Initial 1 Final

Shot 18 (M60) 1633.90 461 333
Shot 20 (M113) 2184.98 857 392

Table 1: Median filtering resulis

pairs s € S. For each subset, pairwise error for every
pair s € S must be calculated, and the pairs ranked
in order of ascending error !. Table 1 also shows that
roughly % of the pairs in S are outliers: rhe numbers
given in the last column indicate the nuraber of pairs
determined not to be outliers.

Figures 1 and 2 are initial and final coregistration es-
timates for two pairs of range and optical images. The
leftmost column shows the target model itself. The mid-
dle column shows features for the optical imagery. The

white features in Figures 1b and 2b indicate the pro-

1t should also be kept in mind that somwe of the com-
putation expense relates to the C++ implemerntation of our
algorithm. However, while a more optimized version could
be implemented, the dependency on the number of features
is S would still hold.

jected 3D target silhouette. The white features in Fig-
ures le and 2e show both silhouette and image features
determined not to be outliers: black indicates outliers.
The image features are found using a model-driven ap-
proach described elsewhere in these proceedings [5]. The
rightmost column shows the range data. Black squares
are model range points, grey squares are LADAR pixels.
Filled squares are determined not to be outliers.

The overall global change between initial and final
coregistration estimates in Figures 1 and 2 is small. This
is a consequence of initializing the algorithm with a good
initial estimate and tight bounds upon the proximity
search used to construct the set S. While the change is
small, median-filtering does refine the estimates in each
case, and as indicated by the numbers of outliers re-
moved (Table 1), this fine adjustment is based upon a
significant refinement of the correspondence.

One characteristic of median filtering is that it tends
to remove features on surfaces viewed from an oblique
angle. Examples include the top of the M60 turret in
Figure 1 or the roof of the M113 in Figure 2. A probable
explanation is that such surfaces tend to have greater
sampling error in the range.

In Figure 2e, note that almost all CCD feature have




(a) initial model (b) initial CCD

(d) final model (e) final CCD

C o 5]

(f) final LADAR

Figure 2: Median filtering results on Shot 20 (M113)

been identified as outliers. Also note that the position of
the black features suggests this is not due to an error in
the feature extraction: the features are essentially in the
correct positions. It is believed that for this example,
the large planar surface of the M113 fits the range data
so well, that relative to this fit, the CCD features are
considered to be outliers.

5 Conclusion

Pose estimation methods which minimize the mean-
square-error become unstable when outliers are intro-
duced into the correspondence. We have already in-
troduced one such method for simultaneously recover-
ing the pose+registration parameters in {7]. The previ-
ous work, however, could not be demonstrated in a real
ATR domain, due to the unavailability of automatically
extracted model and data features and the inability to
generate outlier-free correspondences.

As a consequence of work done in [8, 3|, we are now
able to extract model and data features on real ATR
images. In this paper, we have constructed outlier-frec
correspondences using median filtering. Using the real
ATR image features and median filtering coregistration,
we have constructed outlier-free correspondences. Due

to the expense of the current coregistration implemen-
tation, the time required to run median filtering is rela-
tively high. However, it does mark a significant number
of initially considered correspondences as outliers. We
have shown that these filtered correspondences do pro-
vide stable coregistration results.
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